Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein.
نویسندگان
چکیده
Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis.
منابع مشابه
Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.
Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% ...
متن کاملThe rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease.
Uromodulin (Tamm-Horsfall protein) is the most abundant protein excreted in the urine under physiological conditions. It is exclusively produced in the kidney and secreted into the urine via proteolytic cleavage. Its biological function is still not fully understood. Uromodulin has been linked to water/electrolyte balance and to kidney innate immunity. Also, studies in knockout mice demonstrate...
متن کاملUrinary calcium oxalate crystal growth inhibitors.
Calcium stones occur because renal tubular fluid and urine are supersaturated with respect to calcium oxalate and phosphate. The process of stone formation includes crystal nucleation, growth, aggregation, and attachment to renal epithelia. Urine contains macromolecules that modify these processes and may protect against stone formation. Attention has focused especially on inhibitors of crystal...
متن کاملThe role of Randall plaques on kidney stone formation
Randall's plaque is microscopically a plaque of calcium deposited in the interstitial tissue of the renal papilla. These plaques are thought to serve as a nidus for urinary stone formation. Large amounts of Randall's plaque are unique to idiopathic calcium oxalate stone formers. Although Randall's plaques can be found in other stone formers, only in idiopathic calcium oxalate stone formers, the...
متن کاملDefective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections.
Mice lacking a functional cyclooxygenase-2 (COX-2) gene develop abnormal kidneys that contain hypoplastic glomeruli and reduced proximal tubular mass, and they often die of renal failure. A comparison of kidney-specific gene expression between wild-type and COX-2-deficient mice by cDNA microarrays revealed that although more than 500 mRNAs were differentially expressed between the two strains o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 299 3 شماره
صفحات -
تاریخ انتشار 2010